
1

American Institute of Aeronautics and Astronautics

 AIAA-98-4531

A METHOD TO INTERFACE AUTO-GENERATED CODE
INTO AN OBJECT-ORIENTED SIMULATION

FRAMEWORK
Patricia C. Glaab, Kevin Cunningham* , P. Sean Kenney,

Richard A. Leslie, David W. Geyer, Michael M. Madden*

Unisys Corporation

NASA Langley Research Center

Mail Stop 125B

Hampton, VA 23681

Abstract

Sophisticated computer-based tool packages allow con-

trol system researchers to develop and analyze complex

control systems from their desktops. Tools such as

Matrix X and Matlab are capable of producing auto-

generated code of control system diagrams as an output

option. Validation requirements are greatly reduced

when the auto-generated code can be directly installed

into an engineering simulation program.

The code produced by automatic code generators, how-

ever, is often cryptic and inflexible. Incorporating it

elegantly into an object-oriented simulation requires

forethought on the part of the simulation programmer.

This paper presents a method of interfacing auto-

generated code into a flexible, object-oriented simula-

tion framework that maintains encapsulation of objects

within the framework and does not compromise the

design of the system.

Introduction

Support for flexible software design methods is a goal

of object-oriented simulation program development at

 Copyright 1998 by the authors. Published by the

American Institute of Aeronautics and Astronautics,

Inc. with permission.

the NASA Langley Research Center (LaRC). The abil-

ity to accommodate auto-generated code from sophisti-

cated computer-based tool packages provides a versatile

analysis environment for researchers and potentially

reduces the workload of the simulation programmer.

The auto-generated code module, however, has very

little flexibility when it must be ported directly from the

tool output to the simulation environment. A technique

was required to interface between auto-coded modules

and the simulation framework that did not compromise

the object-oriented design of the simulation program.∗

The methodology presented here was developed to sup-

port the baseline simulation of a commercial transport

autopilot/flight director system (AFDS) developed

within the Langley Standard Real-time Simulation in

C++ (LaSRS++) [2] at LaRC. The AFDS implementa-

tion in the simulation was structured to allow auto-

generated code to be easily incorporated into the C++

simulation program. Specific requirements for this de-

sign included two major objectives. The final design

required rapid linking of auto-coded modules into a soft

real-time simulation without having to modify simula-

tion or auto-generated code. This was intended to

minimize the potential of accidentally changing the

code’s behavior from its original configuration. Addi-

∗ Senior Member, AIAA

2

American Institute of Aeronautics and Astronautics

tionally, hand-coded versions of all AFDS subsystem

objects were required as part of the baseline, and either

of the two versions of each component must be se-

lectable between runs. For the auto-coded versions, the

intention was for a smooth and logical transition from a

desktop tool environment to a soft real-time environ-

ment, and eventually to a hard real-time session with a

cockpit and pilots. Other simulation users required the

unmodified AFDS at a much earlier date for support of

other studies, and since not all subsystem components

would necessarily be delivered as auto-code, a complete

hand-coded version was required as the default. The

method developed allows the simulation user to select

the version of the AFDS, baseline C++ or linked auto-

code, for each component of the 757 autopilot inde-

pendently.

The intention of this paper is to present a design method

for managing complex, interacting systems with a

sound overall object-oriented (OO) policy that ulti-

mately allows flexibility at the lowest object levels. By

designing a system architecture that meets these goals,

incorporating code with special input/output (I/O) re-

quirements is simplified at startup and for future main-

tenance. Auto-generated code created by computer-

based engineering tool presents special I/O require-

ments because the tool manufacturer chooses the style

of the interface and execution. These conventions must

be gracefully accommodated if the code is to be ported

to the simulation environment unaltered.

Like many legacy systems that were written before the

advent of OO design philosophy, the prior implementa-

tion of the system relied heavily on component interac-

tion and data sharing in a web-like fashion. The task of

implementing an OO system heirarchy within the target

system as a precursor to interfacing auto-code was in-

cluded because this problem presents itself for many

complex, legacy systems. It is also crucial to the clean

incorporation of the auto-generated code. Whenever

possible, established design patterns were used in the

system architecture. Design patterns offer simple and

elegant solutions to specific problems that tend to occur

over and over in software problem solving. By incorpo-

rating time-tested solutions, a programmer may capital-

ize on the experience and efforts of many developers

and begin a design at a stage that may have otherwise

required years of refinement [1].

An Overview of the Example System

The documentation received for the simulated AFDS

defines the system as a complex interaction of many

components. Each of the components has unique I/O

requirements, and all are highly dependent on each

other. Though these component definitions provide a

logical delineation for class objects, their interdepend-

ence violates encapsulation and would make unit testing

of individual subsystem components difficult.

A hand-coded C++ implementation was required to

function as part of the simulation framework to emulate

standard behavior of the AFDS. This version was de-

veloped using the same style guide conventions im-

posed on the overall simulation program. The second

version was an auto-generated code module delivered

by researcher engineers using a computer-based engi-

neering tool package. The behavior of this version

would change as research required. The complexity of

accommodating two different I/O format requirements

for many components portended a maintenance night-

mare. Also, the delivery of each auto-coded module

was uncertain. . The absence of any or all auto-code

modules could not break the system. Rapid reconfigu-

ration and testing was required as the auto-coded com-

ponents were delivered or modified. Three design crite-

ria were established to meet final code requirements:

��The web-like interaction of the components as pre-

sented in the original documentation had to be re-

moved and the I/O managed more cleanly

��An isolated location had to be created to perform

the specific I/O requirements for the auto-code

without propagating knowledge or burden of these

special requirements to other parts of the system

��A foundation had to be laid to effectively isolate

the internal complexity of component objects from

the client code that would use them

3

American Institute of Aeronautics and Astronautics

Step One: Untangling the Web

An ideal unit test scenario allows the developer to begin

testing at the lowest level in an isolated development

area without having to depend on other objects being

linked in or emulated. The object should then be port-

able to the production environment without modifica-

tion. With a web of objects that directly interact with

each other, unit testing becomes extremely difficult.

References to data sources included in a production

version of a class must be removed, or the referenced

sources must be included in the test environment. As

links within the class grow, so does the size and com-

plexity of the unit test environment.

Though loose coupling of objects is common in modern

OO code designs, isolation of code modules in legacy

system may not be so clearly defined. The quick and

easy inclusion of common blocks in FORTRAN coding,

for example, is conducive to a final design that uses a

web of data interaction.

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Figure 1 - Web of interaction when object are al-
lowed to refer directly to each other

The design of the example AFDS system was developed

in a procedural FORTRAN environment and relied

heavily on information sharing and passing between

objects. As a first step in untangling the interactive

web, a Mediator class [1] was created to manage infor-

mation to the subsystem components. The Mediator

class encapsulates how the objects within the system

may interact and orchestrates the exchange of inputs

and outputs between subsystem components. This code

pattern promotes loose coupling by keeping objects

from referring to each other directly, and it lets the de-

veloper vary their behavior independently. By impos-

ing this Mediator to control interaction, the tight cou-

pling shown in the previous illustration was removed.

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Component
 Object

Object
Mediator

Figure 2 - Controlled interaction using a Mediator
class

Each component object receives inputs from and pro-

vides outputs to the Mediator class exclusively. No

component within the system has knowledge or depend-

ence on any other component. This loosely coupled

system removes interdependencies of subsystems and

provides a clean, manageable point of reference for all

subsystem I/O.

Step 2: Isolating and Adapting the Special I/O Re-
quirements of the Auto-Generated Code

With auto-generated code delivered by an outside

source, the simulation developer may not have control

over the style of data input or function execution.

Chances are slim that the manufacturer of the computer-

based tool package chose the same style guide conven-

tions adopted by the target simulation program. When

several versions of a subsystem component are required,

this necessitates several styles of communication to

handle data transfer and operation. If the auto-code

version is not stable (subject to frequent changes in a

research environment, for example), the changing com-

munication requirements translate to maintenance over-

head that can propagate through the entire subsystem.

This maintenance overhead can be isolated within one

class with the use of an Adapter pattern [1].

The Adapter class converts the interface of a class into

another interface that the client expects. This allows the

4

American Institute of Aeronautics and Astronautics

client to communicate with the auto-code in a fashion

consistent with local style guide conventions. A stan-

dard method of invoking execution of the auto-code can

also be defined that need not be changed if the delivered

auto-code changes significantly. The Adapter class can

simply redefine the action upon the auto-code internal

to itself.

.

Client Class

Adapter Class

Subsystem Class

Figure 3 - Adapter class addition to translate
interface

Adding the Adapter class layer becomes especially

beneficial when the information sent to the various

component versions is generally the same. In this case,

the interface can be defined in one base class from

which all components interfaces inherit. This isolated

communication point provides an ideal place to set up a

Facade.

Step 3: Hiding the Complexity of Component Be-
haviors and Interfaces

The decision requirements to accommodate two or

more interface versions for each subclass component

present a significant increase in the complexity of the

client class (the Mediator class in the example system).

Additionally, maintenance work may be required if in-

terface requirements change. To remove knowledge of

the complex interactions of the subsystems from the

classes that use them, a unified interface can be defined

to make the subsystem to make easier to use. This uni-

fied interface is called a Facade [1] and was used in the

example system to encapsulate decision-making over-

head within the operations of the subclass components

themselves. In the C++ implementation of the AFDS

component, the Facade is the base class from which the

hand-coded implementation inherits. It is also the base

class from which the C++ Adapter class to the auto-

generated code inherits.

ClassesSubsystem

ClassesSubsystem

Mediator
Class

Facade

Mediator
Class

Figure 4 - Facade addition to reduce apparent com-
plexity to client

5

American Institute of Aeronautics and Astronautics

In a simpler scenario where only one version of a sub-

system must be interfaced, the Facade is not necessarily

needed as part of the design. This is true as long as the

client class, the Mediator, is only required to communi-

cate to an interface isolated within one subsystem class

and that interface is stable. For example, in this imple-

mentation with only auto-generated code as the subsys-

tem target, the Mediator would speak directly to the

Adapter class.

Unit Testing

Unit testing is handled easily at several levels in the

final system architecture. The auto-generated version of

the system is an isolated entity and its inputs and out-

puts and internal functionality are easily exercised in a

ComponentComponent
 Object Object

Component
 Object

 Subsystem
Component

 Subsystem
Component

 Subsystem
Component

 Subsystem
Component

Mediator

Adapter

Code Module
Generated

Auto-

Facade Class

Class (C++) Coded Class
C++ Hand-

 Class

stand-alone fashion. The hand-coded subsystem object

uses an isolated, well-defined interface and a unit test

program can either be imposed at the level of the Fa-

cade for exercising the client only, or above the Facade

to exercise the Facade interface to the client code.

At a higher level, the two implementations can be tested

or compared from a single unit test program which takes

advantage of the one unified Facade interface.

Final Design and conclusions

When inflexible interfaces must be accommodated into

an OO environment, a clean initial design of the system

is critical to isolating the external component from the

6

American Institute of Aeronautics and Astronautics

simulation framework. Isolation of the interface then

minimizes compromises that must be make to style

guide conventions. By using the techniques outlined in

this paper, an AFDS was implemented in the LaSRS++

framework that met the required design criteria. All

code specialized to interface to auto-generated code

modules is encapsulated into one class per component

and hidden from the clients that use it. Code mainte-

nance to support auto-code changes are localized within

this one Adapter class. Selection of component ver-

sions is provided to the simulation user, yet facilitated

to the information handling class (the Mediator) through

the use of a Facade software pattern that provides one

unified interface to all subsystems. The example system

describes implementation of Xmath/SystemBuild

auto_code in C, but theoretically the technique could be

used to interface any type of code with special I/O re-

quirements. A related approach is taken in the hard-

ware interface of the LaSRS++ simulation with cockpit

controls, displays, flight management computers, etc. as

a method of isolating hardware-specific code require-

ments through abstraction [6].

Bibliography

[1] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides. Design Patterns: Elements of Re-

usable Object-Oriented Software. Addison-

Wesley, Reading, Massachusetts, 1995.

[2] Richard A. Leslie, et al. LaSRS++ An Object-

Oriented Framework for Real-Time Simulation of

Aircraft. Paper Number AIAA-98-4529, August,

1998.

[3] Keith D. Hoffler, Dr. Thomas E. Alberts, and Pat-

ricia C. Glaab. Implementing the Control Laws for

the NASA Transport Systems Research Vehicle B-

757. ViGYAN, Inc., Hampton, Virginia, 1997.

[4] Steve McConnell. Code Complete: A Practical

Handbook of Software Construction. Microsoft

Press, Redmond, Washington, 1993.

[5] Scott Meyers. Effective C++. Addison-Wesley,

Reading, Massachusetts, second edition, 1998.

[6] P. Sean Kenney, et al. Using Abstraction To Iso-

late Hardware In An Object-Oriented Simulation.

Paper Number AIAA-98-4533, August, 1998.

[7] Grady Booch. Object-Oriented Analysis and De-

sign. Benjamin/Cummings, Redwood City, Cali-

fornia, 1994.

